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This is the supplementary material for Large-scale single-pixel imaging and sensing. In the

supplementary material, we provide more experiment results for large-scale single-pixel imaging

(SPI), image-free single-pixel segmentation, and image-free single-pixel object detection experi-

ments.

1 Supplementary Material for large-scale SPI

Comparison with the conventional SPI methods at different sampling rates. We compared our

SPIS with the conventional SPI methods at different sampling rates. Fig. 1 shows the visualization

results. The methods involved in the comparison include ReconNet15, DCAN,22 GAN,23 and the

combination of ReconNet and BM3D. From Fig. 1, We can see that the reconstructed images by

our method outperform the other methods in terms of both fine details and overall quality. Even

at 3% sampling rate, our SPIS technique is able to reconstruct a clear image. This validates that

the Transformer-based architecture can better model global features and extract high-dimensional

semantic features that are effective for reconstruction.

Comparison with different sampling patterns. To validate that the reported small-size opti-

mized pattern is more suitable for SPI tasks, we compared the imaging performance of the small-

size optimized pattern with other patterns on the large-scale SPI task. Fig. 2 presents the vi-

sual comparison results. The illumination patterns involved in the comparison include Hardmard
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Fig 1: Experiment comparison between SPIS and the conventional SPI methods at different sam-
pling rates.

pattern,22 Random pattern,20 and full-size optimized pattern.24 Results in Fig. 2 show that our

small-size pattern maintains stable performance even at an extremely low sampling rate. The per-

formance of Hadamard and Random patterns did not perform as well as the optimized pattern

due to information loss. The optimized full-size patterns did not perform well because they can

only acquire 1-dimensional (1D) measurements, and cannot retain the position information of each

pixel. In summary, the optimized small-size pattern is more suitable for large-scale SPI.

Noise interference experiment. To demonstrate the robustness of SPIS to noise interference,

2



Hadamard
Full-size Pattern 

Transformer
Random OursGround Truth

S
a
m

p
le

 r
a

te
 3

%
S

a
m

p
le

 r
a

te
 5

%
S

a
m

p
le

 r
a

te
 7

%

Fig 2: Experiment comparison between small-size optimized pattern and other patterns at different
sampling rates.

we added different levels of Gaussian noise to the measurements at different sampling rates, and

fed them into the SPIS encoder for SPI reconstruction. We use numpy and opencv (cv2) libraries

in Python to add Gaussian noise to the measurements. First, we need to read the measurements as
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an array, then calculate the corresponding noise intensity to be added based on the target signal-to-

noise ratio (SNR, in dB), and finally add the Gaussian noise to the measurements. As seen in Fig.

3, the reported SPIS method still performs well with measurement noise.
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Fig 3: Experiment results of noise robustness. We validate the robustness of SPIS to noise interfer-
ence on the SPI task by adding different levels of Gaussian noise to the measurements at different
sampling rates.

Quantitative results of different SPI methods at different sampling rates. We show the

quantitative imaging results of different SPI methods at different sampling rates in Tab. 1. The

methods involved in the comparison include SPIS using Hadamard, Random and optimized full-
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Table 1: The quantitative large-scale single-pixel imaging results. “SR” stands for sampling rate.
We marked the highest score for each column in bold.

Method
SR=3% SR=5% SR=7% SR=10% SR=15%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Hadamard 15.82 0.34 16.61 0.41 17.19 0.44 17.74 0.49 18.27 0.53
Random 17.23 0.36 18.25 0.38 18.93 0.41 19.42 0.46 21.27 0.51

Optimized 19.16 0.61 19.76 0.63 20.02 0.63 20.89 0.66 21.53 0.69
DCAN 18.67 0.51 18.86 0.54 19.13 0.59 19.53 0.62 20.13 0.63
GAN 19.22 0.58 19.85 0.61 20.19 0.65 20.61 0.68 20.94 0.72

ReconNet 19.89 0.62 20.01 0.67 20.90 0.72 21.12 0.75 22.41 0.75
W/O Uncertainty 22.92 0.82 23.14 0.83 23.25 0.84 23.81 0.85 24.36 0.85

Step1 22.47 0.78 22.77 0.79 23.39 0.82 23.71 0.83 24.15 0.84
Step2 (Ours) 24.13 0.83 24.64 0.86 25.33 0.86 25.69 0.88 26.17 0.89

size patterns, the existing deep learning-based single-pixel imaging methods (DCAN, GAN and

ReconNet), the SPIS without uncertainty-driven loss function, the SPIS only completing the first

training stage, and the SPIS completing two stages of training. As shown in Tab. 1, our SPIS

method achieves the highest PSNR and SSIM at different sampling rates.

Noise mitigation techniques used in real-world experiments. For the SPI task, it has been

shown that normalization of the photodetector signals leads to an improvement in the signal-to-

noise ratio (SNR) and the overall image reconstruction quality.20 In this work, to improve SNR,

we binarized the illuminating patterns and performed normalization to signals by maintaining an

equal black/white ratio in each illumination pattern.

2 Supplementary Material for image-free segmentation

Noise interference experiment. To demonstrate the robustness of SPIS to noise interference on

the image-free single-pixel segmentation task, we added different levels of noise to the measure-

ments at different sampling rates, and fed them into the SPIS decoder for image-free segmentation.

The experiment results are presented in Tab. 2 and Fig. 4. As shown in Fig. 4, even at 1% sampling
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rate and 30dB noise interference, the SPIS technique was still able to segment the cells. Tab. 2

shows that even at a sampling rate of 0.1% and a noise level of 30dB, our method still achieved a

Dice of 0.78 for the segmented images, validating that SPIS is robust to noise interference.
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Fig 4: Noise robustness experiment of SPIS on image-free single-pixel segmentation. We vali-
date the robustness of SPIS to noise interference on image-free single-pixel segmentation tasks by
adding different levels of noise to the measurements at different sampling rates.

Comparison with different illumination patterns. We compared the segmentation perfor-
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Table 2: The quantitative results of SPIS on image-free single-pixel segmentation at different
sampling rates with different levels of measurement noise.

Noise level
SR=0.1% SR=3% SR=5% SR=7% SR=10% SR=15%

Dice mIoU Dice mIoU Dice mIoU Dice mIoU Dice mIoU Dice mIoU
0dB 0.84 0.72 0.82 0.70 0.82 0.70 0.88 0.79 0.89 0.80 0.92 0.85
5dB 0.83 0.71 0.82 0.70 0.82 0.70 0.86 0.75 0.87 0.77 0.91 0.85

10dB 0.83 0.68 0.82 0.69 0.82 0.69 0.78 0.73 0.76 0.75 0.90 0.83
15dB 0.81 0.67 0.81 0.67 0.82 0.69 0.71 0.70 0.65 0.71 0.89 0.80
20dB 0.79 0.66 0.79 0.67 0.81 0.69 0.68 0.68 0.63 0.69 0.88 0.78
30dB 0.78 0.63 0.78 0.65 0.77 0.64 0.64 0.66 0.62 0.67 0.87 0.76
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Fig 5: Comparison between small-size optimized pattern and other patterns at different sampling
rates on the image-free single-pixel segmentation task.

mance of the small-size optimized pattern with other patterns on the image-free single-pixel seg-

mentation task. The patterns methods involved in the comparison include Hardmard pattern,22

Random pattern20 and full-size optimized pattern.24 Results in Fig. 5 show that the small-size

optimized pattern can maintain a stable performance even at an extremely low sampling rate. The

Hadamard and Random patterns did not perform as well as the optimized pattern due to infor-

mation loss. The optimized full-size pattern did not perform well because it can only acquire 1D
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Fig 6: Comparison between SPIS and the existing deep-learning-based image-free single-pixel
segmentation methods at different sampling rates.

measurements and cannot retain the position information of each pixel. In summary, the small-size

optimized pattern is more suitable for the image-free single-pixel segmentation task.

Comparison with deep-learning-based image-free segmentation methods. We also com-

pared SPIS with the existing deep-learning-based image-free segmentation methods at different

sampling rates. The methods involved in the comparison include SPS25 and DeepLabv3.17 The

SPS method uses full-size optimized patterns to sample the scene, and uses a convolutional net-

work to preliminarily process the measurements and output intermediate results. Then, it inputs

the intermediate results into a UNet to perform segmentation. We added an upsampling residual

convolution layer (consistent with the upsampling residual convolutional layer structure in SPIS’s

image reconstruction decoder) to increase the output resolution to 256 × 256 pixels (originally it

was 128×128), and the other settings remain the same as the original publication. The DeepLabv3

method is implemented by using the DeepLabv3 network17 to replace Unet in SPS. From Fig. 6,

We can see that the results output by our method outperform other methods in terms of both fine

details and overall quality. Even at 1% sampling rate, our SPIS technique can segment the cells.
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Input Attention Map Output Visualization Result
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Fig 7: Visualization results of image-free single-pixel object detection. The “min” and “max” rep-
resent the relative coordinates of the upper left corner and lower right corner of the target bounding
box, respectively. To better demonstrate the detection results, we visualized the output of SPIS on
the input scene.

3 Supplementary Material for image-free object detection

Experiment results of image-free single-pixel object detection. Figure 7 shows the detection

results corresponding to several real scenes printed on films. Among them, the attention heat map

9



validates that the Transformer-based SPIS can reinforce the network’s attention to the targets in the

scene. We can see that the SPIS technique maintains a high detection accuracy on different classes

of objects, which validates the effectiveness of our proposed technique.

The derivation of the UDL loss function. In the first training stage, we used the L1 loss

function as

LossL1(IRHQ, IHQ) = EIRHQ,IHQ
[||IRHQ − IHQ||]. (1)

Among them, IRHQ stands for the high-quality image reconstructed by the network, IHQ stands

for the ground truth.

In the second training stage, the loss function consists of the regression loss Lreg, confidence

loss Lcon, and classification loss Lcls.

Lreg =
K∗K∑
i=0

M∑
j=0

Iobjij (2− wi ∗ hi)
[
(xi − x′

i)
2
+ (yi − y′i)

2
+ (wi − w′

i)
2
+ (hi − h′

i)
2
]

Lcon = −
K∗K∑
i=0

M∑
j=0

Iobjij [C ′
i log (Ci) + (1− C ′

i) log (1− Ci)]−

γnoobj

K∗K∑
i=0

M∑
j=0

Inoobjij [C ′
i log (Ci)+ (1− C ′

i) log (1− Ci)]

Lcls = −
K∗K∑
i=0

Iobjij

∑
c∈classes

[p′i(c) log (pi(c)) + (1− p′i(c)) log (1− pi(c))]

(2)

where K ∗K represents that the scene is divided into K ∗K grids by the network, and each grid

produces M candidate boxes. Each candidate box will get the corresponding bounding box after

the network processing, finally forming K ∗ K ∗ M bounding boxes. If there is no target in the

bounding box, only the confidence loss of the box is calculated.

In the regression loss Lreg, wi and hi represent the length and width of the object’s bounding

box, xi and yi denote the true coordinates of the object, w′
i and h

′
i stand for the length and width
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of the predict object’s bounding box, and x
′
i and y

′
i represent the predicted object coordinates. Iobji

denotes if the object appears in cell i, and Iobjij denotes that the jth bounding box predictor in cell i

is responsible for that prediction.

In the confidence loss Lcon, Ci represents the category confidence in cell i. γnoobj is a hyper-

parameter to suppress the loss of confidence prediction for boxes that do not contain objects, and

prevent the confidence from being too close to 0 when cell i does not contain any object.

The classification loss Lcls uses the cross entropy function to calculate the loss. When the jth

anchor box of the ith grid is responsible for an object, then the bounding box generated by the

anchor box will calculate the classification loss function.

The final loss function is the linear summation of the above three kinds of loss functions

Loss = αLreg + βLcon + µLcls (3)

Among them, α, β, and µ are hyperparameters that aim to keep the three sub-loss functions in the

same order of magnitude.

4 Detailed Structure of the Encoder

The encoder module consists of several convolutional blocks with a kernel size of 32 × 32 and a

stride of 32, which are used to simulate the sampling process of SPI. The trained encoding module

g ∈ Rk×k×n (k is pattern size set to be 32) is extracted and used as the optimized small-size pattern

in practice. The patterns in all three applications are found by first decoding the original image,

then switching to a different decoding task and fine-tuning the patterns in the convolutional layers.

Assuming that the scene is s ∈ RH×W×Cin (H , W and Cin are the height, width and channel
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number, respectively), we use the pattern g to scan and sample the scene s to obtain the coupled

2D measurements Fm ∈ RH
32

×W
32

×C (C represents the number of channels of the acquired 2D

coupled measurements), and the above process can be characterized as

Fm = fk∗k(s ∗ g). (4)

We implement small-size pattern sampling by embedding non-overlapping small-size patterns

in multiple zero-initialized full-size patterns, and quickly switching between full-size patterns. For

example, when the sampling rate is 3% and the sampling resolution is 1024 × 1024, we need 31

32×32 small-size optimized patterns. Each 32×32 pattern needs to be scanned and sampled 1024

times on the 1024×1024 target scene, and finally produces a total of 31 32×32 2D measurements.

To achieve this goal, we embed each 32× 32 pattern in 1024 1024× 1024 zero-initialized patterns

without overlapping, so that we get a total of 31744 (31×1024) 1024×1024 locally valid patterns.

These patterns are then fed into the DMD to sample the target scene and obtain 31744 1D measure-

ments, which are sequentially reshaped into 31 32× 32 2D measurements. This sampling method

combines the advantages of compressed sensing and point scanning imaging.34 Compared with

the conventional full-size pattern sampling method, the small-size sampling approach can retain

the position information of the target and improve sampling efficiency. Compared with the point-

scanning system, our method samples a larger portion of the scene at once, thus reducing sampling

times and increasing sampling speed. Moreover, to improve SNR, we binarized the illuminating

patterns and performed normalization to signals by maintaining an equal white/black ratio in each

illuminating pattern.

The high-dimensional semantic feature extraction module of the encoder consists of several
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Transformer layers. Transformer is a basic deep-learning network structure.26 Thanks to its excel-

lent contextual information capturing and global feature modeling capabilities, the Global Vision

Transformer26 has achieved great success in the image processing field recently. Our Transformer-

based encoder can guide the network to focus on the regions with interesting targets, so as to

extract high-dimensional semantic features that are effective for imaging and sensing.26 Since the

Transformer only deals with 1D sequence information, we transform the coupled 2D measure-

ments into 1D sequence information by linear projection. In order to retain location information,

we introduce learnable position encoding (PE) and fuse them with the feature sequence by direct

summation. The computational process is denoted as

F0 = W ∗ Fm + PE. (5)

Among them, W represents the linear projection operation, and F0 ∈ RHW
1024

×C represents the output

feature sequence. Then we input F0 into the Transformer block which contains four Transformer

layers. Each Transformer layer contains a standard multi-headed attention block (MHA)26 and a

feedforward network (FFN) module, where the FFN consists of a normalization layer and a fully

connected layer. The output of the lth layer in the Transformer block can be calculated as

F
′

l = MHA(LN(Fl−1)) + Fl−1, Fl = FFN(LN(F
′

l )) + F
′

l , (6)

where LN represents the normalization layer, Fl represents the output of the lth layer in the Trans-

former block. The feature sequence output by the Transformer block is FL ∈ RHW
1024

×C , which is

reshaped to a feature map of Fe ∈ RH
32

×W
32

×C after feature remapping, and sent to the decoder for
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subsequent processing.

5 Detailed Structure of the Decoder

When SPIS is applied for large-scale SPI or image-free single-pixel segmentation, the decoder con-

sists of a multi-scale upsampling pyramid network with residual connections. Each up-sampling

block is composed of an up-sampling function, a 3× 3 convolutional layer, an activation function,

and a residual connection. The rearranged layer is used to rearrange the number of channels after

upsampling.

The feature map inputed into the decoder is Fe ∈ R(H
32

×W
32

×C). In the decoder, the height H

and width W of the feature map are doubled and the channel number C is halved after being

processed by each up-sampling block. After processing by 5 upsampling blocks, we can obtain

Fup ∈ R(H×W× C
32

). The channel number C is determined by the resolution of the reconstructed

image. When the reconstruction resolution is 1024 × 1024, C is set to 256. Finally, we use 1 × 1

convolution to change the number of channels of the feature map Fup to 1, and obtain the final

reconstructed image IR ∈ RH×W . The above process is calculated as

Fupi =
M∑
i=1

Hup
i (Fupi−1

) + Fupi−1
, IR = Con1×1(Fup). (7)

Among them, Fupi represents the feature map output after the ith upsampling block, Hup
i is the ith

up-sampling block, M denotes the total number of up-sampling blocks in the decoder.

When SPIS is applied for image-free object detection, the decoder consists of an MSAN mod-

ule, BMFP module and predict head. The MSAN and BMFP modules are constructed by stacking

multi-scale LC-blocks. The LC-block combines local-window (7 × 7 in this work) self-attention
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and channel-wise convolution in a parallel design to model cross-window connections, expanding

its receptive field and capturing contextual information. At this point, the complexity of self-

attention calculation changes from O(n2) to O(n). It also provides spatial and channel-wise infor-

mation interaction, and enables cross-window and cross-dimensional feature complementarity of

the decoder. For an input feature Fi−1, it first passes through a 1 ∗ 1 convolution, then split evenly

into two feature map groups X1 and X2. We formulate such a process as

X1;X2 = Split(Conv1×1(Fi−1)). (8)

Next, X1 and X2 are separately fed into a local-window Transformer block and a channel-wise

convolution block, giving rise to

Y1;Y2 = Transformer(X1);Conv(X2). (9)

Finally, Y1 and Y2 are concatenated as the input of a 1 ∗ 1 convolution which has a residual con-

nection with the input X . As such, the final output of the ith LC-block is given by

Fi = Conv1∗1(Concat(Y1, Y2)) + Fi−1. (10)

The feature Fe output from the encoder is first fed into the MSAN module for feature extrac-

tion, and the extracted features are termed feature layers. In the backbone part, we acquire three

effective feature layers. Then, the three effective feature layers are fed into the BMFP module

for bi-directional multi-scale feature fusion. In BMFP, we upsample and downsample the features

simultaneously and perform feature fusion to fully fuse the feature information at different scales.
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After the MSAN and BMFP processing, we obtain three enhanced effective feature layers. They

are then fed into the predict head module for the final object detection. We divide the predict head

into two parts to implement classification and regression separately, and finally integrate them

when making predictions.

6 The pattern size selection experiment.

Pattern Size mAP(%)

4 68.24%

8 72.32%

16 78.20%

32 82.20%

64 74.80%

128 65.25%

Fig 8: The experiment results of image-free object detection under different pattern sizes. We
can see that the pattern size of 32× 32 produces the highest detection accuracy.

In real-world experiments, the size of illumination patterns will affect the performance of SPI and

SPIS. Theoretically, the smaller the pattern size, the better the imaging and image-free sensing

performance. This is because a smaller pattern size can retain more detailed location information

and capture rich local features. However, as the pattern size becomes smaller, the luminous flux

becomes smaller, which will reduce the signal-to-noise ratio, thus reducing the performance of

imaging and image-free sensing.

To select the most suitable pattern size, we studied the image-free object detection performance

under different pattern sizes at a fixed sampling rate of 5%. We tried 6 different pattern sizes

16



(including 4×4, 8×8, 16×16, 32×32, 64×64, 128×128), and the object detection results are

shown in Fig. 8). We can see that the pattern size of 32×32 pixels produced the best performance.

However, we anticipate that in different practical application scenarios, 32×32 may not be the most

appropriate pattern size. For example, in a low-light environment, a larger pattern size can bring

more light flux. This means that the optimal pattern size depends on specific lighting and noise

conditions. How to choose the most appropriate pattern size according to different applications is

one of future research directions.
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